
Financial modelling : theory, implementation and practice (with Matlab source)
Title:
Financial modelling : theory, implementation and practice (with Matlab source)
Author:
Kienitz, Joerg.
ISBN:
9780470744895
9781118413319
9781118413302
9781118413296
Personal Author:
Publication Information:
Hoboken, N.J. : Wiley, 2012.
Physical Description:
p. cm.
Series:
Wiley finance series
Contents:
Machine generated contents note: 1.Introduction and Management Summary -- 2.Why We Have Written this Book -- 3.Why You Should Read this Book -- 4.The Audience -- 5.The Structure of this Book -- 6.What this Book Does Not Cover -- 7.Credits -- 8.Code -- pt. I FINANCIAL MARKETS AND POPULAR MODELS -- 1.Financial Markets - Data, Basics and Derivatives -- 1.1.Introduction and Objectives -- 1.2.Financial Time-Series, Statistical Properties of Market Data and Invariants -- 1.2.1.Real World Distribution -- 1.3.Implied Volatility Surfaces and Volatility Dynamics -- 1.3.1.Is There More than just a Volatility? -- 1.3.2.Implied Volatility -- 1.3.3.Time-Dependent Volatility -- 1.3.4.Stochastic Volatility -- 1.3.5.Volatility from Jumps -- 1.3.6.Traders' Rule of Thumb -- 1.3.7.The Risk Neutral Density -- 1.4.Applications -- 1.4.1.Asset Allocation -- 1.4.2.Pricing, Hedging and Risk Management -- 1.5.General Remarks on Notation -- 1.6.Summary and Conclusions -- 1.7.Appendix - Quotes --
Contents note continued: 2.Diffusion Models -- 2.1.Introduction and Objectives -- 2.2.Local Volatility Models -- 2.2.1.The Bachelier and the Black-Scholes Model -- 2.2.2.The Hull-White Model -- 2.2.3.The Constant Elasticity of Variance Model -- 2.2.4.The Displaced Diffusion Model -- 2.2.5.CEV and DD Models -- 2.3.Stochastic Volatility Models -- 2.3.1.Pricing European Options -- 2.3.2.Risk Neutral Density -- 2.3.3.The Heston Model (and Extensions) -- 2.3.4.The SABR Model -- 2.3.5.SABR - Further Remarks -- 2.4.Stochastic Volatility and Stochastic Rates Models -- 2.4.1.The Heston-Hull-White Model -- 2.5.Summary and Conclusions -- 3.Models with Jumps -- 3.1.Introduction and Objectives -- 3.2.Poisson Processes and Jump Diffusions -- 3.2.1.Poisson Processes -- 3.2.2.The Merton Model -- 3.2.3.The Bates Model -- 3.2.4.The Bates-Hull-White Model -- 3.3.Exponential Levy Models -- 3.3.1.The Variance Gamma Model -- 3.3.2.The Normal Inverse Gaussian Model -- 3.4.Other Models --
Contents note continued: 3.4.1.Exponential Levy Models with Stochastic Volatility -- 3.4.2.Stochastic Clocks -- 3.5.Martingale Correction -- 3.6.Summary and Conclusions -- 4.Multi-Dimensional Models -- 4.1.Introduction and Objectives -- 4.2.Multi-Dimensional Diffusions -- 4.2.1.GBM Baskets -- 4.2.2.Libor Market Models -- 4.3.Multi-Dimensional Heston and SABR Models -- 4.3.1.Stochastic Volatility Models -- 4.4.Parameter Averaging -- 4.4.1.Applications to CMS Spread Options -- 4.5.Markovian Projection -- 4.5.1.Baskets with Local Volatility -- 4.5.2.Markovian Projection on Local Volatility and Heston Models -- 4.5.3.Markovian Projection onto DD SABR Models -- 4.6.Copulae -- 4.6.1.Measures of Concordance and Dependency -- 4.6.2.Examples -- 4.6.3.Elliptical Copulae -- 4.6.4.Archimedean Copulae -- 4.6.5.Building New Copulae from Given Copulae -- 4.6.6.Asymmetric Copulae -- 4.6.7.Applying Copulae to Option Pricing -- 4.6.8.Applying Copulae to Asset Allocation --
Contents note continued: 4.7.Multi-Dimensional Variance Gamma Processes -- 4.8.Summary and Conclusions -- pt. II Numerical Methods And Recipes -- 5.Option Pricing by Transform Techniques and Direct Integration -- 5.1.Introduction and Objectives -- 5.2.Fourier Transform -- 5.2.1.Discrete Fourier Transform -- 5.2.2.Fast Fourier Transform -- 5.3.The Carr-Madan Method -- 5.3.1.The Optimal a -- 5.4.The Lewis Method -- 5.4.1.Application to Other Payoffs -- 5.5.The Attari Method -- 5.6.The Convolution Method -- 5.7.The Cosine Method -- 5.8.Comparison, Stability and Performance -- 5.8.1.Other Issues -- 5.9.Extending the Methods to Forward Start Options -- 5.9.1.Forward Characteristic Function for Levy Processes and CIR Time Change -- 5.9.2.Forward Characteristic Function for Levy Processes and Gamma-OU Time Change -- 5.9.3.Results -- 5.10.Density Recovery -- 5.11.Summary and Conclusions -- 6.Advanced Topics Using Transform Techniques -- 6.1.Introduction and Objectives --
Contents note continued: 6.2.Pricing Non-Standard Vanilla Options -- 6.2.1.FFT with Lewis Method -- 6.3.Bermudan and American Options -- 6.3.1.The Convolution Method -- 6.3.2.The Cosine Method -- 6.3.3.Numerical Results -- 6.3.4.The Fourier Space Time-Stepping -- 6.4.The Cosine Method and Barrier Options -- 6.5.Greeks -- 6.6.Summary and Conclusions -- 7.Monte Carlo Simulation and Applications -- 7.1.Introduction and Objectives -- 7.2.Sampling Diffusion Processes -- 7.2.1.The Exact Scheme -- 7.2.2.The Euler Scheme -- 7.2.3.The Predictor-Corrector Scheme -- 7.2.4.The Milstein Scheme -- 7.2.5.Implementation and Results -- 7.3.Special Purpose Schemes -- 7.3.1.Schemes for the Heston Model -- 7.3.2.Unbiased Scheme for the SABR Model -- 7.4.Adding Jumps -- 7.4.1.Jump Models - Poisson Processes -- 7.4.2.Fixed Grid Sampling (FGS) -- 7.4.3.Stochastic Grid Sampling (SGS) -- 7.4.4.Simulation - Levy Models -- 7.4.5.Schemes for Levy Models with Stochastic Volatility -- 7.5.Bridge Sampling --
Contents note continued: 7.6.Libor Market Model -- 7.7.Multi-Dimensional Levy Models -- 7.8.Copulae -- 7.8.1.Distributional Sampling Approach (DSA) -- 7.8.2.Conditional Sampling Approach (CSA) -- 7.8.3.Simulation from Other Copulae -- 7.9.Summary and Conclusions -- 8.Monte Carlo Simulation - Advanced Issues -- 8.1.Introduction and Objectives -- 8.2.Monte Carlo and Early Exercise -- 8.2.1.Longstaff-Schwarz Regression -- 8.2.2.Policy Iteration Methods -- 8.2.3.Upper Bounds -- 8.2.4.Problems of the Method -- 8.2.5.Financial Examples and Numerical Results -- 8.3.Greeks with Monte Carlo -- 8.3.1.The Finite Difference Method (FDM) -- 8.3.2.The Pathwise Method -- 8.3.3.The Affine Recursion Problem (ARP) -- 8.3.4.Adjoint Method -- 8.3.5.Bermudan ARPs -- 8.4.Euler Schemes and General Greeks -- 8.4.1.SDE of Diffusions -- 8.4.2.Approximation by Euler Schemes -- 8.4.3.Approximating General Greeks Using ARP -- 8.4.4.Greeks -- 8.5.Application to Trigger Swap -- 8.5.1.Mathematical Modelling --
Contents note continued: 8.5.2.Numerical Results -- 8.5.3.The Likelihood Ratio Method (LRM) -- 8.5.4.Likelihood Ratio for Finite Differences - Proxy Simulation -- 8.5.5.Numerical Results -- 8.6.Summary and Conclusions -- 8.7.Appendix - Trees -- 9.Calibration and Optimization -- 9.1.Introduction and Objectives -- 9.2.The Nelder-Mead Method -- 9.2.1.Implementation -- 9.2.2.Calibration Examples -- 9.3.The Levenberg-Marquardt Method -- 9.3.1.Implementation -- 9.3.2.Calibration Examples -- 9.4.The L-BFGS Method -- 9.4.1.Implementation -- 9.4.2.Calibration Examples -- 9.5.The SQP Method -- 9.5.1.The Modified and Globally Convergent SQP Iteration -- 9.5.2.Implementation -- 9.5.3.Calibration Examples -- 9.6.Differential Evolution -- 9.6.1.Implementation -- 9.6.2.Calibration Examples -- 9.7.Simulated Annealing -- 9.7.1.Implementation -- 9.7.2.Calibration Examples -- 9.8.Summary and Conclusions -- 10.Model Risk - Calibration, Pricing and Hedging -- 10.1.Introduction and Objectives --
Contents note continued: 10.2.Calibration -- 10.2.1.Similarities - Heston and Bates Models -- 10.2.2.Parameter Stability -- 10.3.Pricing Exotic Options -- 10.3.1.Exotic Options and Different Models -- 10.4.Hedging -- 10.4.1.Hedging - The Basics -- 10.4.2.Hedging in Incomplete Markets -- 10.4.3.Discrete Time Hedging -- 10.4.4.Numerical Examples -- 10.5.Summary and Conclusions -- pt. III Implementation, Software Design And Mathematics -- 11.Matlab - Basics -- 11.1.Introduction and Objectives -- 11.2.General Remarks -- 11.3.Matrices, Vectors and Cell Arrays -- 11.3.1.Matrices and Vectors -- 11.3.2.Cell Arrays -- 11.4.Functions and Function Handles -- 11.4.1.Functions -- 11.4.2.Function Handles -- 11.5.Toolboxes -- 11.5.1.Financial -- 11.5.2.Financial Derivatives -- 11.5.3.Fixed-Income -- 11.5.4.Optimization -- 11.5.5.Global Optimization -- 11.5.6.Statistics -- 11.5.7.Portfolio Optimization -- 11.6.Useful Functions and Methods -- 11.6.1.FFT -- 11.6.2.Solving Equations and ODE --
Contents note continued: 11.6.3.Useful Functions -- 11.7.Plotting -- 11.7.1.Two-Dimensional Plots -- 11.7.2.Three-Dimensional Plots - Surfaces -- 11.8.Summary and Conclusions -- 12.Matlab - Object Oriented Development -- 12.1.Introduction and Objectives -- 12.2.The Matlab OO Model -- 12.2.1.Classes -- 12.2.2.Handling Classes in Matlab -- 12.2.3.Inheritance, Base Classes and Superclasses -- 12.2.4.Handle and Value Classes -- 12.2.5.Overloading -- 12.3.A Model Class Hierarchy -- 12.4.A Pricer Class Hierarchy -- 12.5.An Optimizer Class Hierarchy -- 12.6.Design Patterns -- 12.6.1.The Builder Pattern -- 12.6.2.The Visitor Pattern -- 12.6.3.The Strategy Pattern -- 12.7.Example - Calibration Engine -- 12.7.1.Calibrating a Data Set or a History -- 12.8.Example - The Libor Market Model and Greeks -- 12.8.1.An Abstract Class for LMM Derivatives -- 12.8.2.A Class for Bermudan Swaptions -- 12.8.3.A Class for Trigger Swaps -- 12.9.Summary and Conclusions -- 13.Math Fundamentals --
Contents note continued: 13.1.Introduction and Objectives -- 13.2.Probability Theory and Stochastic Processes -- 13.2.1.Probability Spaces -- 13.2.2.Random Variables -- 13.2.3.Important Results -- 13.2.4.Distributions -- 13.2.5.Stochastic Processes -- 13.2.6.Levy Processes -- 13.2.7.Stochastic Differential Equations -- 13.3.Numerical Methods for Stochastic Processes -- 13.3.1.Random Number Generation -- 13.3.2.Methods for Computing Variates -- 13.4.Basics on Complex Analysis -- 13.4.1.Complex Numbers -- 13.4.2.Complex Differentiation and Integration along Paths -- 13.4.3.The Complex Exponential and Logarithm -- 13.4.4.The Residual Theorem -- 13.5.The Characteristic Function and Fourier Transform -- 13.6.Summary and Conclusions.
Title Subject:
Added Author: