Cover image for Analytic methods in geomechanics
Analytic methods in geomechanics
Title:
Analytic methods in geomechanics
Author:
Chau, Kam-Tim, 1960-
ISBN:
9781466555853
Personal Author:
Publication Information:
Boca Raton, FL : Taylor & Francis, 2012.
Physical Description:
xx, 437 p. : ill. ; 24 cm.
Contents:
Machine generated contents note: ch. 1 Elementary Tensor Analysis -- 1.1.Introduction -- 1.2.General Tensors, Cartesian Tensors, and Tensor Rank -- 1.3.A Brief Review of Vector Analysis -- 1.4.Dyadic Form of Second-Order Tensors -- 1.5.Derivatives of Tensors -- 1.6.Divergence and Stokes Theorems -- 1.6.1.Divergence Theorem or Gauss Theorem -- 1.6.2.Stokes Theorem -- 1.7.Some Formulas in Cylindrical Coordinates -- 1.8.Some Formulas in Spherical Coordinates -- 1.9.Summary and Further Reading -- 1.10.Problems -- ch. 2 Elasticity and Its Applications -- 2.1.Introduction -- 2.2.Basic Concepts for Stress Tensor -- 2.3.Piola-Kirchhoff Stresses -- 2.4.Coordinate Transformation of Stress -- 2.5.Basic Concepts for Strain Tensor -- 2.6.Rate of Deformation -- 2.7.Compatibility Equations -- 2.8.Hill's Work-Conjugate Stress Measures -- 2.9.Constitutive Relation -- 2.10.Isotropic Solids -- 2.11.Transversely Isotropic Solids -- 2.12.Equations of Motion and Equilibrium --

Contents note continued: 2.13.Compatibility Equation in Terms of Stress Tensor -- 2.14.Strain Energy Density -- 2.15.Complementary Energy -- 2.16.Hyperelasticity and Hypoelasticity -- 2.17.Plane Stress, Plane Strain, and the Airy Stress Function -- 2.18.Stress Concentration at a Circular Hole -- 2.19.Force Acting at the Apex of a Wedge -- 2.20.Uniform Vertical Loading on Part of the Surface -- 2.21.Solution for Indirect Tensile Test (Brazilian Test) -- 2.22.Jaeger's Modified Brazilian Test -- 2.23.Edge Dislocation -- 2.24.Dislocation Pile-up and Crack -- 2.25.Screw Dislocation and Faulting -- 2.26.Mura Formula for Curved Dislocation -- 2.27.Summary and Further Reading -- 2.28.Problems -- ch. 3 Complex Variable Methods for 2-D Elasticity -- 3.1.Introduction -- 3.2.Coordinate Transformation in Complex Variable Theory -- 3.3.Homogeneous Stresses in Terms Analytic Functions -- 3.4.A Borehole Subject to Internal Pressure -- 3.5.Kirsch Solution by Complex Variable Method --

Contents note continued: 3.6.Definiteness and Uniqueness of the Analytic Function -- 3.7.Boundary Conditions for the Analytic Functions -- 3.8.Single-valued Condition for Multi-connected Bodies -- 3.9.Multi-connected Body of Infinite Extend -- 3.10.General Transformation of Quantities -- 3.11.Elastic Body with Holes -- 3.12.Stress Concentration at a Square Hole -- 3.13.Mapping Functions for Other Holes -- 3.14.Summary and Further Reading -- 3.15.Problems -- ch. 4 Three-Dimensional Solutions in Elasticity -- 4.1.Introduction -- 4.2.Displacement Formulation -- 4.2.1.Helmholtz Decomposition -- 4.2.2.Lame's Strain Potential for Incompressible Solids -- 4.2.3.Galerkin Vector -- 4.2.4.Love's Displacement Potential for Cylindrical Solids -- 4.2.5.Papkovitch-Neuber Displacement Potential -- 4.2.6.2-D Papkovitch-Neuber vs. Kolosov-Muskhelisvili Methods -- 4.3.Stress Formulations -- 4.3.1.Beltrami and Beltrami-Schaefer Stress Functions -- 4.3.2.Maxwell Stress Functions --

Contents note continued: 4.3.3.Morera Sress Function -- 4.3.4.Other Beltrami Stress Functions -- 4.4.Some 3-D Solutions in Geomechanics -- 4.4.1.Hollow Sphere Subject to Internal and External Pressures -- 4.4.2.Kelvin's Fundamental Solution -- 4.4.2.1.Papkovitch-Neuber Potential Method -- 4.4.2.2.Love's Displacement Potential Method -- 4.4.3.Boussinesq's Fundamental Solution -- 4.4.3.1.Love's and Lame's Strain Potential Methods -- 4.4.3.2.Papkovitch-Neuber Potential Method -- 4.4.4.Cerruti's Fundamental Solution -- 4.4.5.Mindlin's Fundamental Solution in Half-space -- 4.4.6.Lorentz's Fundamental Solution -- 4.4.7.Melan's Fundamental Solution -- 4.5.Harmonic Functions and Indirect Method -- 4.6.Harmonic Functions in Spherical Coordinates -- 4.7.Harmonic Functions in Cylindrical Coordinates -- 4.8.Biharmonic Functions -- 4.9.Muki's Formulation in Cylindrical Coordinates -- 4.9.1.Muki's Vector Potentials -- 4.9.2.Method of Solution by Hankel Transform --

Contents note continued: 4.9.3.Boussinesq Solution by Hankel Transform -- 4.10.Summary and Further Reading -- 4.10.1.Summary -- 4.10.2.Further Reading -- 4.10.2.1.General Method of Solutions for 3-D Elasticity -- 4.10.2.2.Integral Transform in Solving 3-D Problems -- 4.10.2.3.General Method of Solutions for Circular Cylinders -- 4.10.2.4.General Method of Solutions for Spheres -- 4.11.Problems -- ch. 5 Plasticity and Its Applications -- 5.1.Introduction -- 5.2.Flow Theory and Deformation Theory -- 5.3.Yield Function and Plastic Potential -- 5.4.Elasto-plastic Constitutive Model -- 5.5.Rudnicki-Rice (1975) Model -- 5.6.Drucker's Postulate, PMPR, and Il'iushin's Postulate -- 5.7.Yield Vertex -- 5.8.Mohr-Coulomb Model -- 5.9.Lode Angle or Parameter -- 5.10.Yield Criteria on the π-Plane -- 5.11.Other Soil Yield Models -- 5.12.Cap Models -- 5.13.Physical Meaning of Cam-Clay Model -- 5.14.Modified Cam-Clay -- 5.15.A Cam-clay Model for Finite Strain --

Contents note continued: 5.16.Plasticity by Internal Variables -- 5.17.Viscoplasticity -- 5.17.1.One-dimensional Modeling -- 5.17.2.Three-dimensional Models -- 5.17.3.Consistency Condition for Perzyna Model -- 5.17.4.Consistency Model of Wang et al. (1997) -- 5.17.5.Adachi-Oka (1984) Model -- 5.18.Summary and Further Reading -- 5.19.Problems -- ch. 6 Fracture Mechanics and Its Applications -- 6.1.Introduction -- 6.2.Stress Concentration at a Elliptical Hole -- 6.3.Stress Concentration at a Tensile Crack -- 6.4.Stress Field near a Shear Crack -- 6.5.The General Stress and Displacement Field for Mode I Cracks -- 6.6.The General Stress and Displacement Field for Mode II Cracks -- 6.7.The General Stress and Displacement Field for Mode III Cracks -- 6.8.The Energy Release Rate at Crack Tips -- 6.9.Fracture Toughness for Rocks -- 6.10.J-integral and the Energy Release Rate -- 6.11.Westergaard Stress Function and Superposition -- 6.12.Growth of Slip Surface in Slopes --

Contents note continued: 6.13.Energy Release Rate for Earthquake -- 6.14.Wing Crack Model under Compressions -- 6.15.Bazant's Size Effect Law via J-integral -- 6.16.Continuum Damage Mechanics -- 6.17.Solids Containing Microcracks -- 6.17.1.Compliance Change due to a Single Crack -- 6.17.2.Effective Compliance for Cracked Bodies -- 6.17.3.Non-interacting Result for Planar Transverse Isotropy -- 6.17.4.Planar Transverse Isotropy by Self-consistent Method -- 6.17.5.Planar Transverse Isotropy by Differential Scheme -- 6.17.6.Non-interacting Result for Cylindrical Transverse Isotropy -- 6.17.7.Non-interacting Result for Isotropically Cracked Solids -- 6.18.Rudnicki-Chau (1996) Multiaxial Microcrack Model -- 6.19.Summary and Further Reading -- 6.20.Problems -- ch. 7 Viscoelasticty and Its Applications -- 7.1.Introduction -- 7.2.Boltzmann's Integral Form of Stress and Strain -- 7.3.Stieltjes Convolution Notation -- 7.4.Stress-Strain Relation in Differential Equation Form --

Contents note continued: 7.4.1.Maxwell Model -- 7.4.2.Kelvin-Voigt Model -- 7.4.3.Three-Parameter Models -- 7.4.4.Generalized Maxwell and Kelvin Models -- 7.5.Stress-strain Relation in Laplace Transform Space -- 7.5.1.Viscoelastic Solids with Elastic Bulk Modulus -- 7.5.2.Maxwell Solids -- 7.5.3.Kelvin-Voigt Solids -- 7.5.4.Standard Linear Solid and Three-Parameter Models -- 7.6.Correspondence Principle -- 7.6.1.Boussinesq Problem for Maxwell Half-space -- 7.6.2.Boussinesq Problem for Kelvin-Voigt Half-space -- 7.6.3.Boussinesq Problem for Three-Parameter Model A -- 7.7.Creeping and Relaxation Tests -- 7.7.1.Maxwell Material -- 7.7.1.1.Creeping Test -- 7.7.1.2.Relaxation Test -- 7.7.2.Kelvin-Voigt Material -- 7.7.2.1.Creeping Test -- 7.7.2.2.Relaxation Test -- 7.7.3.Three-parameter Model A or Standard Linear Solid -- 7.7.3.1.Creeping Test -- 7.7.3.2.Relaxation Test -- 7.7.3.3.Relaxation Test in Compression -- 7.8.Calibration of the Viscoelastic Model --

Contents note continued: 7.9.Viscoelastic Crack Models for Steam Injection -- 7.9.1.Superposition of Auxiliary Problems I and II -- 7.9.2.Center of Dilatation in Two-dimensional Bimaterial -- 7.9.3.Stress Intensity Factor of Auxiliary Problem II -- 7.9.4.Inverse Laplace Transform -- 7.9.5.Numerical Results -- 7.10.Summary and Further Reading -- 7.11.Problems -- ch. 8 Linear Elastic Fluid-Infiltrated Solids and Poroelasticity -- 8.1.Introduction -- 8.2.Biot's Theory of Poroelasticity -- 8.2.1.McNamee and Gibson Cylindrical Form -- 8.2.2.Rice-Cleary (1976) Linearized Constitutive Relation -- 8.2.3.Rudnicki (1986) Constitutive Relation -- 8.2.4.Rudnicki's (1985) Anisotropic Diffusive Solids -- 8.3.Biot-Verruijt Displacement Function -- 8.4.McNamee-Gibson-Verruijt Displacement Function -- 8.5.Schiffman-Fungaroli-Verruijt Displacement Function -- 8.6.Schiffman-Fungaroli Displacement Function -- 8.7.Laplace-Hankel Transform Technique --

Contents note continued: 8.8.Point Forces and Point Fluid Source in Half-space -- 8.8.1.Vertical Point Force Solution -- 8.8.2.Horizontal Point Force Solution -- 8.8.3.Fluid Point Source Solution -- 8.9.Cleary's Fundamental Solution of Point Forces in Full Space -- 8.9.1.Canonical Representation of Point Force Solution -- 8.9.2.Determination of Evolution Functions -- 8.9.3.Determination of Unknown Constant F[∞] -- 8.9.4.Final Solutions -- 8.10.Rudnicki's Fundamental Solutions in Full Space -- 8.10.1.Impulsive Fluid Source -- 8.10.2.Canonical Form of Displacement Solution -- 8.10.3.Error Function Representation -- 8.10.4.Suddenly Applied Fluid Mass Source -- 8.10.5.Equivalence of Fluid Mass Dipole and Body Force -- 8.10.6.Fluid Mass Dipoles -- 8.10.7.Point Force Solution by Rudnicki (1986) -- 8.11.Thermoelasticity vs. Poroelasticity -- 8.12.Summary and Further Reading -- 8.12.1.Summary -- 8.12.2.Further Reading -- 8.13.Problems -- ch. 9 Dynamics and Waves in Geomaterials --

Contents note continued: 9.1.Introduction -- 9.2.Seismic Waves -- 9.3.Waves in Infinite Elastic Isotropic Solids -- 9.4.Helmholtz Theorem and Wave Speeds -- 9.5.Rayleigh Waves -- 9.5.1.Characteristics Equation for Rayleigh Wave Speed -- 9.5.2.Rayleigh Wave in Solids Satisfying Poisson Condition -- 9.5.3.Segel (1977) Method for Arbitrary Poisson's Ratio -- 9.6.Love Waves -- 9.6.1.Non-existence of SH-wave in Homogeneous Half-space -- 9.6.2.Love Waves in an Elastic Layer on a Half-space -- 9.6.3.Dispersion Characteristics of Love Waves -- 9.7.Stoneley Waves -- 9.8.Elastic-plastic Waves -- 9.8.1.Acceleration Waves in Solids -- 9.8.2.Shear Banding as Stationary Acceleration Wave -- 9.8.3.Acoustic Tensor for Geomaterials -- 9.8.4.Wave Speed Analysis -- 9.9.Waves in Viscoelastic Solids -- 9.9.1.Complex Moduli -- 9.9.2.Longitudinal and Transverse Waves Speeds -- 9.10.Dynamic Fracture Mechanics -- 9.10.1.Dynamic Solutions for a Stationary Crack --

Contents note continued: 9.10.2.Asymptotic Fields near a Moving Crack-tip -- 9.10.3.Dynamic Energy Release Rate -- 9.10.4.Dynamic Fracture Toughness -- 9.11.Vibrations and Soil Dynamics -- 9.12.Summary and Further Reading -- 9.12.1.Summary -- 9.12.2.Further Reading -- 9.12.2.1.Waves in Solids and Elastodynamics -- 9.12.2.2.Seismic Waves on Earth -- 9.12.2.3.Waves in Porous Media -- 9.12.2.4.Dynamic Fracture Mechanics -- 9.12.2.5.Dynamic Fragmentation -- 9.13.Problems -- Appendices -- Appendix A Nanson Formula -- Appendix B Laplace Transform -- Appendix C Legendre Transform and Work Increments.
Abstract:
"Bringing together a range of areas including tensor analysis, elasticity, plasticity, fracture mechanics and viscoelasticity, among others, this book is an indispensible guide to the fundamentals of geomechanics. It provides explanations of each subject area, using a step-by-step process with numerous worked examples. The more advanced material, such as 2-D elasticity and application of J-integral to model slipping slopes then supplies a gateway into understanding the latest research results and applying them to practical problems. The book is suitable for undergraduate and graduate students as well as professionals and researchers"--
Copies: