Cover image for Statistical methods
Title:
Statistical methods
Author:
Freund, Rudolf J. (Rudolf Jakob), 1927-2014.
ISBN:
9780123749703
Edition:
3rd ed.
Publication Information:
Amsterdam ; Boston : Elsevier, c2010.
Physical Description:
xxi, 796 p. : ill. ; 25 cm.
Contents:
Machine generated contents note: ch. 1 Data and Statistics -- 1.1.Introduction -- 1.1.1.Data Sources -- 1.1.2.Using the Computer -- 1.2.Observations and Variables -- 1.3.Types of Measurements for Variables -- 1.4.Distributions -- 1.4.1.Graphical Representation of Distributions -- 1.5.Numerical Descriptive Statistics -- 1.5.1.Location -- 1.5.2.Dispersion -- 1.5.3.Other Measures -- 1.5.4.Computing the Mean and Standard Deviation from a Frequency Distribution -- 1.5.5.Change of Scale -- 1.6.Exploratory Data Analysis -- 1.6.1.The Stem and Leaf Plot -- 1.6.2.The Box Plot -- 1.6.3.Comments -- 1.7.Bivariate Data -- 1.7.1.Categorical Variables -- 1.7.2.Categorical and Interval Variables -- 1.7.3.Interval Variables -- 1.8.Populations, Samples, and Statistical Inference---A Preview -- 1.9.Data Collection -- 1.10.Chapter Summary -- Summary -- 1.11.Chapter Exercises -- Concept Questions -- Practice Exercises -- Exercises -- Project -- ch. 2 Probability and Sampling Distributions --

Contents note continued: 2.1.Introduction -- 2.1.1.Chapter Preview -- 2.2.Probability -- 2.2.1.Definitions and Concepts -- 2.2.2.System Reliability -- 2.2.3.Random Variables -- 2.3.Discrete Probability Distributions -- 2.3.1.Properties of Discrete Probability Distributions -- 2.3.2.Descriptive Measures for Probability Distributions -- 2.3.3.The Discrete Uniform Distribution -- 2.3.4.The Binomial Distribution -- 2.3.5.The Poisson Distribution -- 2.4.Continuous Probability Distributions -- 2.4.1.Characteristics of a Continuous Probability Distribution -- 2.4.2.The Continuous Uniform Distribution -- 2.4.3.The Normal Distribution -- 2.4.4.Calculating Probabilities Using the Table of the Normal Distribution -- 2.5.Sampling Distributions -- 2.5.1.Sampling Distribution of the Mean -- 2.5.2.Usefulness of the Sampling Distribution -- 2.5.3.Sampling Distribution of a Proportion -- 2.6.Other Sampling Distributions -- 2.6.1.The X2 Distribution -- 2.6.2.Distribution of the Sample Variance --

Contents note continued: 2.6.3.The t Distribution -- 2.6.4.Using the t Distribution -- 2.6.5.The F Distribution -- 2.6.6.Using the F Distribution -- 2.6.7.Relationships among the Distributions -- 2.7.Chapter Summary -- 2.8.Chapter Exercises -- Concept Questions -- Practice Exercises -- Exercises -- ch. 3 Principles of Inference -- 3.1.Introduction -- 3.2.Hypothesis Testing -- 3.2.1.General Considerations -- 3.2.2.The Hypotheses -- 3.2.3.Rules for Making Decisions -- 3.2.4.Possible Errors in Hypothesis Testing -- 3.2.5.Probabilities of Making Errors -- 3.2.6.Choosing between α and β -- 3.2.7.Five-Step Procedure for Hypothesis Testing -- 3.2.8.Why Do We Focus on the Type I Error? -- 3.2.9.Choosing α -- 3.2.10.The Five Steps for Example 3.3 -- 3.2.11.p Values -- 3.2.12.The Probability of a Type II Error -- 3.2.13.Power -- 3.2.14.Uniformly Most Powerful Tests -- 3.2.15.One-Tailed Hypothesis Tests -- 3.3.Estimation -- 3.3.1.Interpreting the Confidence Coefficient --

Contents note continued: 3.3.2.Relationship between Hypothesis Testing and Confidence Intervals -- 3.4.Sample Size -- 3.5.Assumptions -- 3.5.1.Statistical Significance versus Practical Significance -- 3.6.Chapter Summary -- 3.7.Chapter Exercises -- Concept Questions -- Practice Exercises -- Multiple Choice Questions -- Exercises -- ch. 4 Inferences on a Single Population -- 4.1.Introduction -- 4.2.Inferences on the Population Mean -- 4.2.1.Hypothesis Test on μ -- 4.2.2.Estimation of μ -- 4.2.3.Sample Size -- 4.2.4.Degrees of Freedom -- 4.3.Inferences on a Proportion -- 4.3.1.Hypothesis Test on p -- 4.3.2.Estimation of p -- 4.3.3.Sample Size -- 4.4.Inferences on the Variance of One Population -- 4.4.1.Hypothesis Test on σ2 -- 4.4.2.Estimation of σ2 -- 4.5.Assumptions -- 4.5.1.Required Assumptions and Sources of Violations -- 4.5.2.Detection of Violations -- 4.5.3.Tests for Normality -- 4.5.4.If Assumptions Fail -- 4.5.5.Alternate Methodology --

Contents note continued: 4.6.Chapter Summary -- 4.7.Chapter Exercises -- Concept Questions -- Practice Exercises -- Exercises -- Project -- ch. 5 Inferences for Two Populations -- 5.1.Introduction -- 5.2.Inferences on the Difference between Means Using Independent Samples -- 5.2.1.Sampling Distribution of a Linear Function of Random Variables -- 5.2.2.The Sampling Distribution of the Difference between Two Means -- 5.2.3.Variances Known -- 5.2.4.Variances Unknown but Assumed Equal -- 5.2.5.The Pooled Variance Estimate -- 5.2.6.The "Pooled" t Test -- 5.2.7.Variances Unknown but Not Equal -- 5.3.Inferences on Variances -- 5.4.Inferences on Means for Dependent Samples -- 5.5.Inferences on Proportions -- 5.5.1.Comparing Proportions Using Independent Samples -- 5.5.2.Comparing Proportions Using Paired Samples -- 5.6.Assumptions and Remedial Methods -- 5.7.Chapter Summary -- 5.8.Chapter Exercises -- Concept Questions -- Practice Exercises -- Exercises -- Projects --

Contents note continued: ch. 6 Inferences for Two or More Means -- 6.1.Introduction -- 6.1.1.Using the Computer -- 6.2.The Analysis of Variance -- 6.2.1.Notation and Definitions -- 6.2.2.Heuristic Justification for the Analysis of Variance -- 6.2.3.Computational Formulas and the Partitioning of Sums of Squares -- 6.2.4.The Sum of Squares among Means -- 6.2.5.The Sum of Squares within Groups -- 6.2.6.The Ratio of Variances -- 6.2.7.Partitioning of the Sums of Squares -- 6.3.The Linear Model -- 6.3.1.The Linear Model for a Single Population -- 6.3.2.The Linear Model for Several Populations -- 6.3.3.The Analysis of Variance Model -- 6.3.4.Fixed and Random Effects Model -- 6.3.5.The Hypotheses -- 6.3.6.Expected Mean Squares -- 6.3.7.Notes on Exercises -- 6.4.Assumptions -- 6.4.1.Assumptions Required -- 6.4.2.Detection of Violated Assumptions -- 6.4.3.Tests for Equal Variance -- 6.4.4.Violated Assumptions -- 6.4.5.Variance Stabilizing Transformations -- 6.4.6.Notes on Exercises --

Contents note continued: 6.5.Specific Comparisons -- 6.5.1.Contrasts -- 6.5.2.Orthogonal Contrasts -- 6.5.3.Fitting Trends -- 6.5.4.Lack of Fit Test -- 6.5.5.Notes on Exercises -- 6.5.6.Post Hoc Comparisons -- 6.5.7.Comments -- 6.5.8.Confidence Intervals -- 6.6.Random Models -- 6.7.Unequal Sample Sizes -- 6.8.Analysis of Means -- 6.8.1.ANOM for Proportions -- 6.8.2.ANOM for Count Data -- 6.9.Chapter Summary -- 6.10.Chapter Exercises -- Concept Questions -- Exercises -- Projects -- ch. 7 Linear Regression -- 7.1.Introduction -- 7.1.1.Notes on Exercises -- 7.2.The Regression Model -- 7.3.Estimation of Parameters β0 and β1 -- 7.3.1.A Note on Least Squares -- 7.4.Estimation of σ2 and the Partitioning of Sums of Squares -- 7.5.Inferences for Regression -- 7.5.1.The Analysis of Variance Test for β1 -- 7.5.2.The (Equivalent) t Test for β1 -- 7.5.3.Confidence Interval for β1 -- 7.5.4.Inferences on the Response Variable -- 7.6.Using the Computer --

Contents note continued: 7.7.Correlation -- 7.8.Regression Diagnostics -- 7.9.Chapter Summary -- 7.10.Chapter Exercises -- Concept Questions -- Exercises -- Projects -- ch. 8 Multiple Regression -- 8.1.The Multiple Regression Model -- 8.1.1.The Partial Regression Coefficient -- 8.2.Estimation of Coefficients -- 8.2.1.Simple Linear Regression with Matrices -- 8.2.2.Estimating the Parameters of a Multiple Regression Model -- 8.2.3.Correcting for the Mean, an Alternative Calculating Method -- 8.3.Inferential Procedures -- 8.3.1.Estimation of σ2 and the Partitioning of the Sums of Squares -- 8.3.2.The Coefficient of Variation -- 8.3.3.Inferences for Coefficients -- 8.3.4.Tests Normally Provided by Computer Outputs -- 8.3.5.The Equivalent t Statistic for Individual Coefficients -- 8.3.6.Inferences on the Response Variable -- 8.4.Correlations -- 8.4.1.Multiple Correlation -- 8.4.2.How Useful is the R2 Statistic? -- 8.4.3.Partial Correlation -- 8.5.Using the Computer --

Contents note continued: 8.6.Special Models -- 8.6.1.The Polynomial Model -- 8.6.2.The Multiplicative Model -- 8.6.3.Nonlinear Models -- 8.7.Multicollinearity -- 8.7.1.Redefining Variables -- 8.7.2.Other Methods -- 8.8.Variable Selection -- 8.8.1.Other Selection Procedures -- 8.9.Detection of Outliers, Row Diagnostics -- 8.10.Chapter Summary -- 8.11.Chapter Exercises -- Concept Questions -- Exercises -- Projects -- ch. 9 Factorial Experiments -- 9.1.Introduction -- 9.2.Concepts and Definitions -- 9.3.The Two-Factor Factorial Experiment -- 9.3.1.The Linear Model -- 9.3.2.Notation -- 9.3.3.Computations for the Analysis of Variance -- 9.3.4.Between Cells Analysis -- 9.3.5.The Factorial Analysis -- 9.3.6.Expected Mean Squares -- 9.3.7.Unbalanced Data -- 9.3.8.Notes on Exercises -- 9.4.Specific Comparisons -- 9.4.1.Preplanned Contrasts -- 9.4.2.Basic Test Statistic for Contrasts -- 9.4.3.Multiple Comparisons -- 9.5.Quantitative Factors -- 9.5.1.Lack of Fit -- 9.6.No Replications --

Contents note continued: 9.7.Three or More Factors -- 9.7.1.Additional Considerations -- 9.8.Chapter Summary -- 9.9.Chapter Exercises -- Concept Questions -- Exercises -- Project -- ch. 10 Design of Experiments -- 10.1.Introduction -- 10.1.1.Notes on Exercises -- 10.2.The Randomized Block Design -- 10.2.1.The Linear Model -- 10.2.2.Relative Efficiency -- 10.2.3.Random Treatment Effects in the Randomized Block Design -- 10.3.Randomized Blocks with Sampling -- 10.4.Other Designs -- 10.4.1.Factorial Experiments in a Randomized Block Design -- 10.4.2.Nested Designs -- 10.5.Repeated Measures Designs -- 10.5.1.One Between-Subject and One Within-Subject Factor -- 10.5.2.Two Within-Subject Factors -- 10.5.3.Assumptions of the Repeated Measures Model -- 10.5.4.Split Plot Designs -- 10.5.5.Additional Topics -- 10.6.Chapter Summary -- 10.7.Chapter Exercises -- Concept Questions -- Exercises -- Projects -- ch. 11 Other Linear Models -- 11.1.Introduction -- 11.2.The Dummy Variable Model --

Contents note continued: 11.2.1.Factor Effects Coding -- 11.2.2.Reference Cell Coding -- 11.2.3.Comparing Coding Schemes -- 11.3.Unbalanced Data -- 11.4.Computer Implementation of the Dummy Variable Model -- 11.5.Models with Dummy and Interval Variables -- 11.5.1.Analysis of Covariance -- 11.5.2.Multiple Covariates -- 11.5.3.Unequal Slopes -- 11.5.4.Independence of Covariates and Factors -- 11.6.Extensions to Other Models -- 11.7.Estimating Linear Combinations of Regression Parameters -- 11.7.1.Covariance Matrices -- 11.7.2.Linear Combination of Regression Parameters -- 11.8.Weighted Least Squares -- 11.9.Correlated Errors -- 11.10.Chapter Summary -- 11.10.1.An Example of Extremely Unbalanced Data -- 11.11.Chapter Exercises -- Concept Questions -- Exercises -- Projects -- ch. 12 Categorical Data -- 12.1.Introduction -- 12.2.Hypothesis Tests for a Multinomial Population -- 12.3.Goodness of Fit Using the X2 Test -- 12.3.1.Test for a Discrete Distribution --

Contents note continued: 12.3.2.Test for a Continuous Distribution -- 12.4.Contingency Tables -- 12.4.1.Computing the Test Statistic -- 12.4.2.Test for Homogeneity -- 12.4.3.Test for Independence -- 12.4.4.Measures of Dependence -- 12.4.5.Likelihood Ratio Test -- 12.4.6.Fisher's Exact Test -- 12.5.Loglinear Model -- 12.6.Chapter Summary -- 12.7.Chapter Exercises -- Concept Questions -- Exercises -- Projects -- ch. 13 Special Types of Regression -- 13.1.Introduction -- 13.1.1.Maximum Likelihood and Least Squares -- 13.2.Logistic Regression -- 13.3.Poisson Regression -- 13.3.1.Choosing Between Logistic and Poisson Regression -- 13.4.Nonlinear Least-Squares Regression -- 13.4.1.Sigmoidal Shapes (S Curves) -- 13.4.2.Symmetric Unimodal Shapes -- 13.5.Chapter Summary -- 13.6.Chapter Exercises -- Concept Questions -- Exercises -- Project -- ch. 14 Nonparametric Methods -- 14.1.Introduction -- 14.1.1.Ranks -- 14.1.2.Randomization Tests --

Contents note continued: 14.1.3.Comparing Parametric and Nonparametric Procedures -- 14.2.One Sample -- 14.3.Two Independent Samples -- 14.4.More Than Two Samples -- 14.5.Randomized Block Design -- 14.6.Rank Correlation -- 14.7.The Bootstrap -- 14.8.Chapter Summary -- 14.9.Chapter Exercises -- Concept Questions -- Exercises -- Projects -- Appendix A -- A.1.The Normal Distribution---Probabilities Exceeding Z -- A.1A.Selected Probability Values for the Normal Distribution---Values of Z Exceeded with Given Probability -- A.2.The t Distribution---Values of t Exceeded with Given Probability -- A.3.The X2 Distribution---X2 Values Exceeded with Given Probability -- A.4.The F Distribution, p = 0.1 -- A.4A.The F Distribution, p = 0.05 -- A.4B.The F Distribution, p = 0.025 -- A.4C.The F Distribution, p = 0.01 -- A.4D.The F Distribution, p = 0.005 -- A.5.The Fmax Distribution---Percentage Points of Fmax =s2max/s2max --

Contents note continued: A.6.Orthogonal Polynomials (Tables of Coefficients for Polynomial Trends) -- A.7.Percentage Points of the Studentized Range -- A.8.Percentage Points of Duncan's Multiple Range Test -- A.9.Critical Values for the Wilcoxon Signed Rank Test N = 5(1)50 -- A.10.The Mann-Whitney Two-Sample Test -- A.11.Exact Critical Values for Use with the Analysis of Means -- Appendix B A Brief Introduction to Matrices -- B.1.Matrix Algebra -- B.2.Solving Linear Equations -- Appendix C -- C.1.Florida Lake Data -- C.2.State Education Data Set -- C.3.NADP Data Set -- C.4.Florida County Data Set -- C.5.Cowpea Data Set.
Abstract:
Statistical reasoning is an essential tool in the health sciences, business, economics, the social sciences, and the physical sciences. This text is designed for students at the undergraduate level in disciplines with an emphasis on quantitative skills, or for graduate students in non-mathematical disciplines in which statistics is an important research tool. By providing an overview of statistical methods using standard methods of analysis, the book equips readers with insight needed to recognize appropriate experimental designs, to implement correct analyses, and to arrive at practical conclusions after interpreting statistical results --Book Jacket.
Subject Term:
Copies: