Title:
Deformation and fracture mechanics of engineering materials
Author:
Hertzberg, Richard W., 1937-
ISBN:
9780470527801
Personal Author:
Edition:
Fifth edition.
Publication Information:
Hoboken, NJ : John Wiley & Sons, Inc., [2012], ℗♭2013.
Physical Description:
xxvi, 755 pages ; 27 cm.
General Note:
Previous ed.: published as by Richard W. Hertzberg. 1996.
Formerly CIP.
Contents:
SECTION ONE RECOVERABLE AND NONRECOVERABLE DEFORMATION -- ch. 1 Elastic Response of Solids -- 1.1.Mechanical Testing -- 1.2.Definitions of Stress and Strain -- 1.3.Stress--Strain Curves for Uniaxial Loading -- 1.3.1.Survey of Tensile Test Curves -- 1.3.2.Uniaxial Linear Elastic Response -- 1.3.3.Young's Modulus and Polymer Structure -- 1.3.3.1.Thermoplastic Behavior -- 1.3.3.2.Rigid Thermosets -- 1.3.3.3.Rubber Elasticity -- 1.3.4.Compression Testing -- 1.3.5.Failure by Elastic Buckling -- 1.3.6.Resilience and Strain Energy Density -- 1.3.7.Definitions of Strength -- 1.3.8.Toughness -- 1.4.Nonaxial Testing -- 1.4.1.Bend Testing -- 1.4.2.Shear and Torsion Testing -- 1.5.Multiaxial Linear Elastic Response -- 1.5.1.Additional Isotropic Elastic Constants -- 1.5.2.Multiaxial Loading -- 1.5.2.1.Thin-Walled Pressure Vessels -- 1.5.2.2.Special Cases of Multiaxial Loading -- 1.5.3.Instrumented Indentation -- 1.6.Elastic Anisotropy --
1.6.1.Stiffness and Compliance Matrices -- 1.6.1.1.Symmetry Classes -- 1.6.1.2.Loading Along an Arbitrary Axis -- 1.6.2.Composite Materials -- 1.6.3.Isostrain Analysis -- 1.6.4.Isostress Analysis -- 1.6.5.Aligned Short Fibers -- 1.6.6.Strength of Composites -- 1.6.6.1.Effects of Matrix Behavior -- 1.6.6.2.Effects of Fiber Orientation -- 1.7.Thermal Stresses and Thermal Shock-Induced Failure -- 1.7.1.Upper Bound Thermal Stress -- 1.7.2.Cooling Rate and Thermal Stress -- References -- Further Readings -- Problems -- Review -- Practice -- Design -- Extend -- ch. 2 Yielding and Plastic Flow -- 2.1.Dislocations in Metals and Ceramics -- 2.1.1.Strength of a Perfect Crystal -- 2.1.2.The Need for Lattice Imperfections: Dislocations -- 2.1.3.Observation of Dislocations -- 2.1.4.Lattice Resistance to Dislocation Movement: The Peierls Stress -- 2.1.4.1.Peierls Stress Temperature Sensitivity -- 2.1.4.2.Effect of Dislocation Orientation on Peierls Stress --
2.1.5.Characteristics of Dislocations -- 2.1.6.Elastic Properties of Dislocations -- 2.1.7.Partial Dislocations -- 2.1.7.1.Movement of Partial Dislocations -- 2.2.Slip -- 2.2.1.Crystallography of Slip -- 2.2.2.Geometry of Slip -- 2.2.3.Slip in Polycrystals -- 2.3.Yield Criteria for Metals and Ceramics -- 2.4.Post-Yield Plastic Deformation -- 2.4.1.Strain Hardening -- 2.4.2.Plastic Instability and Necking -- 2.4.2.1.Strain Distribution in a Tensile Specimen -- 2.4.2.2.Extent of Uniform Strain -- 2.4.2.3.True Stress Correction -- 2.4.2.4.Failure of the Necked Region -- 2.4.3.Upper Yield Point Behavior -- 2.4.4.Temperature and Strain-Rate Effects in Tension -- 2.5.Slip in Single Crystals and Textured Materials -- 2.5.1.Geometric Hardening and Softening -- 2.5.2.Crystallographic Textures (Preferred Orientations) -- 2.5.3.Plastic Anisotropy -- 2.6.Deformation Twinning -- 2.6.1.Comparison of Slip and Twinning Deformations --
2.6.2.Heterogeneous Plastic Tensile Behavior -- 2.6.3.Stress Requirements for Twinning -- 2.6.4.Geometry of Twin Formation -- 2.6.5.Elongation Potential of Twin Deformation -- 2.6.6.Twin Shape -- 2.6.7.Twinning in HCP Crystals -- 2.6.8.Twinning in BCC and FCC Crystals -- 2.7.Plasticity in Polymers -- 2.7.1.Polymer Structure: General Remarks -- 2.7.1.1.Side Groups and Chain Mobility -- 2.7.1.2.Side Groups and Crystallinity -- 2.7.1.3.Morphology of Amorphous and Crystalline Polymers -- 2.7.1.4.Polymer Additions -- 2.7.2.Plasticity Mechanisms -- 2.7.2.1.Amorphous Polymers -- 2.7.2.2.Semi-crystalline Polymers -- 2.7.3.Macroscopic Response of Ductile Polymers -- 2.7.4.Yield Criteria -- References -- Problems -- Review -- Practice -- Design -- Extend -- ch. 3 Controlling Strength -- 3.1.Strengthening: A Definition -- 3.2.Strengthening of Metals -- 3.2.1.Dislocation Multiplication -- 3.2.2.Dislocation--Dislocation Interactions -- 3.3.Strain (Work) Hardening --
3.4.Boundary Strengthening -- 3.4.1.Strength of Nanocrystalline and Multilayer Metals -- 3.5.Solid Solution Strengthening -- 3.5.1.Yield-Point Phenomenon and Strain Aging -- 3.6.Precipitation Hardening -- 3.6.1.Microstructural Characteristics -- 3.6.2.Dislocation--Particle Interactions -- 3.7.Dispersion Strengthening -- 3.8.Strengthening of Steel Alloys by Multiple Mechanisms -- 3.9.Metal-Matrix Composite Strengthening -- 3.9.1.Whisker-Reinforced Composites -- 3.9.2.Laminated Composites -- 3.10.Strengthening of Polymers -- 3.11.Polymer-Matrix Composites -- References -- Further Reading -- Problems -- Review -- Practice -- Design -- Extend -- ch. 4 Time-Dependent Deformation -- 4.1.Time-Dependent Mechanical Behavior of Solids -- 4.2.Creep of Crystalline Solids: An Overview -- 4.3.Temperature--Stress--Strain-Rate Relations -- 4.4.Deformation Mechanisms -- 4.5.Superplasticity -- 4.6.Deformation-Mechanism Maps --
4.7.Parametric Relations: Extrapolation Procedures for Creep Rupture Data -- 4.8.Materials for Elevated Temperature Use -- 4.9.Viscoelastic Response of Polymers and the Role of Structure -- 4.9.1.Polymer Creep and Stress Relaxation -- 4.9.2.Mechanical Analogs -- 4.9.3.Dynamic Mechanical Testing and Energy-Damping Spectra -- References -- Problems -- Review -- Practice -- Design -- Extend -- SECTION TWO FRACTURE MECHANICS OF ENGINEERING MATERIALS -- ch. 5 Fracture: An Overview -- 5.1.Introduction -- 5.2.Theoretical Cohesive Strength -- 5.3.Defect Population in Solids -- 5.3.1.Statistical Nature of Fracture: Weibull Analysis -- 5.3.1.1.Effect of Size on the Statistical Nature of Fracture -- 5.4.The Stress-Concentration Factor -- 5.5.Notch Strengthening -- 5.6.External Variables Affecting Fracture -- 5.7.Characterizing the Fracture Process -- 5.8.Macroscopic Fracture Characteristics -- 5.8.1.Fractures of Metals -- 5.8.2.Fractures of Polymers --
5.8.3.Fractures of Glasses and Ceramics -- 5.8.4.Fractures of Engineering Composites -- 5.9.Microscopic Fracture Mechanisms -- 5.9.1.Microscopic Fracture Mechanisms: Metals -- 5.9.2.Microscopic Fracture Mechanisms: Polymers -- 5.9.3.Microscopic Fracture Mechanisms: Glasses and Ceramics -- 5.9.4.Microscopic Fracture Mechanisms: Engineering Composites -- 5.9.5.Microscopic Fracture Mechanisms: Metal Creep Fracture -- References -- Problems -- Review -- Practice -- Design -- Extend -- ch. 6 Elements of Fracture Mechanics -- 6.1.Griffith Crack Theory -- 6.1.1.Verification of the Griffith Relation -- 6.1.2.Griffith Theory and Propagation-Controlled Thermal Fracture -- 6.1.3.Adapting the Griffith Theory to Ductile Materials -- 6.1.4.Energy Release Rate Analysis -- 6.2.Charpy Impact Fracture Testing -- 6.3.Related Polymer Fracture Test Methods -- 6.4.Limitations of the Transition Temperature Philosophy -- 6.5.Stress Analysis of Cracks --
6.5.1.Multiplicity of Y Calibration Factors -- 6.5.2.The Role of K -- Failure Analysis Case Study 6.1 Fracture Toughness of Manatee Bones in Impact -- 6.6.Design Philosophy -- 6.7.Relation Between Energy Rate and Stress Field Approaches -- 6.8.Crack-Tip Plastic-Zone Size Estimation -- 6.8.1.Dugdale Plastic Strip Model -- 6.9.Fracture-Mode Transition: Plane Stress Versus Plane Strain -- Failure Analysis Case Study 6.2 Analysis of Crack Development during Structural Fatigue Test -- 6.10.Plane-Strain Fracture-Toughness Testing of Metals and Ceramics -- 6.11.Fracture Toughness of Engineering Alloys -- 6.11.1.Impact Energy---Fracture-Toughness Correlations -- Failure Analysis Case Study 6.3 Failure of Arizona Generator Rotor Forging -- 6.12.Plane-Stress Fracture-Toughness Testing -- 6.13.Toughness Determination from Crack-Opening Displacement Measurement -- 6.14.Fracture-Toughness Determination and Elastic-Plastic Analysis with the J Integral --
6.14.1.Determination of JIC -- 6.15.Other Fracture Models -- 6.16.Fracture Mechanics and Adhesion Measurements -- References -- Further Readings -- Problems -- Review -- Practice -- Design -- Extend -- ch. 7 Fracture Toughness -- 7.1.Some Useful Generalities -- 7.1.1.Toughness and Strength -- 7.1.2.Intrinsic Toughness -- 7.1.3.Extrinsic Toughening -- 7.2.Intrinsic Toughness of Metals and Alloys -- 7.2.1.Improved Alloy Cleanliness -- 7.2.1.1.Cleaning up Ferrous Alloys -- 7.2.1.2.Cleaning up Aluminum Alloys -- 7.2.2.Microstructural Refinement -- 7.3.Toughening of Metals and Alloys Through Microstructural Anisotropy -- 7.3.1.Mechanical Fibering -- Microstructural Toughening Case Study 7.1 The Titanic -- 7.3.2.Internal Interfaces and Crack Growth -- 7.3.3.Fracture Toughness Anisotropy -- 7.4.Optimizing Toughness of Specific Alloy Systems -- 7.4.1.Ferrous Alloys -- 7.4.2.Nonferrous Alloys -- 7.5.Toughness of Ceramics, Glasses, and Their Composites --
7.5.1.Ceramics and Ceramic-Matrix Composites -- 7.5.2.Glass -- 7.6.Toughness of Polymers and Polymer-Matrix Composites -- 7.6.1.Intrinsic Polymer Toughness -- 7.6.2.Particle-Toughened Polymers -- 7.6.3.Fiber Reinforced Polymer Composites -- 7.7.Natural and Biomimetic Materials -- 7.7.1.Mollusk Shells -- 7.7.2.Bone -- 7.7.3.Tough Biomimetic Materials -- 7.8.Metallurgical Embrittlement of Ferrous Alloys -- 7.8.1.300 to 350°C or Tempered Martensite Embrittlement -- 7.8.2.Temper Embrittlement -- 7.8.3.Neutron-Irradiation Embrittlement -- 7.9.Additional Data -- References -- Problems -- Review -- Practice -- Design -- Extend -- ch. 8 Environment-Assisted Cracking -- 8.1.Embrittlement Models -- 8.1.1.Hydrogen Embrittlement Models -- 8.1.2.Stress Corrosion Cracking Models -- 8.1.2.1.SCC of Specific Material--Environment Systems -- 8.1.3.Liquid-Metal Embrittlement -- 8.1.4.Dynamic Embrittlement -- 8.2.Fracture Mechanics Test Methods --
8.2.1.Major Variables Affecting Environment-Assisted Cracking -- 8.2.1.1.Alloy Chemistry and Thermomechanical Treatment -- 8.2.1.2.Environment -- 8.2.1.3.Temperature and Pressure -- 8.2.2.Environment-Assisted Cracking in Plastics -- 8.2.3.Environment-Assisted Cracking in Ceramics and Glasses -- 8.3.Life and Crack-Length Calculations -- References -- Problems -- Review -- Practice -- Design -- Extend -- ch. 9 Cyclic Stress and Strain Fatigue -- 9.1.Macrofractography of Fatigue Failures -- 9.2.Cyclic Stress-Controlled Fatigue -- 9.2.1.Effect of Mean Stress on Fatigue Life -- 9.2.2.Stress Fluctuation, Cumulative Damage, and Safe-Life Design -- 9.2.3.Notch Effects and Fatigue Initiation -- 9.2.4.Material Behavior: Metal Alloys -- 9.2.4.1.Surface Treatment -- 9.2.5.Material Behavior: Polymers -- 9.2.6.Material Behavior: Composites -- 9.2.6.1.Particulate Composites -- 9.2.6.2.Fiber Composites -- 9.3.Cyclic Strain-Controlled Fatigue --
9.3.1.Cycle-Dependent Material Response -- 9.3.2.Strain Life Curves -- 9.4.Fatigue Life Estimations for Notched Components -- 9.5.Fatigue Crack Initiation Mechanisms -- 9.6.Avoidance of Fatigue Damage -- 9.6.1.Favorable Residual Compressive Stresses -- 9.6.2.Pretensioning of Load-Bearing Members -- References -- Problems -- Review -- Practice -- Design -- Extend -- ch. 10 Fatigue Crack Propagation -- 10.1.Stress and Crack Length Correlations with FCP -- 10.1.1.Fatigue Life Calculations -- 10.1.2.Fail-Safe Design and Retirement for Cause -- 10.2.Macroscopic Fracture Modes in Fatigue -- Fatigue Failure Analysis Case Study 10.1 Stress Intensity Factor Estimate Based on Fatigue Growth Bands -- 10.3.Microscopic Fracture Mechanisms -- 10.3.1.Correlations with the Stress Intensity Factor -- 10.4.Crack Growth Behavior at ΔK Extremes -- 10.4.1.High ΔK Levels -- 10.4.2.Low ΔK Levels -- 10.4.2.1.Estimation of Short-Crack Growth Behavior --
10.5.Influence of Load Interactions -- 10.5.1.Load Interaction Macroscopic Appearance -- 10.6.Environmentally Enhanced FCP (Corrosion Fatigue) -- 10.6.1.Corrosion Fatigue Superposition Model -- 10.7.Microstructural Aspects of FCP in Metal Alloys -- 10.7.1.Normalization and Calculation of FCP Data -- 10.8.Fatigue Crack Propagation in Engineering Plastics -- 10.8.1.Polymer FCP Frequency Sensitivity -- 10.8.2.Fracture Surface Micromorphology -- 10.9.Fatigue Crack Propagation in Ceramics -- 10.10.Fatigue Crack Propagation in Composites -- References -- Further Reading -- Problems -- Review -- Practice -- Design -- Extend -- ch. 11 Analyses of Engineering Failures -- 11.1.Typical Defects -- 11.2.Macroscopic Fracture Surface Examination -- 11.3.Metallographic and Fractographic Examination -- 11.4.Component Failure Analysis Data -- 11.5.Case Histories -- Case 1 Shotgun Barrel Failures -- Overview of Failure Events and Background Information --
Proposed Causation Theories -- Fractographic Evidence of Failed Gun Barrels -- Estimation of the Material's Fatigue Endurance Limit -- Microfractography of Fatigue Fracture in Gun Barrel Material -- The Verdicts -- Case 2 Analysis of Aileron Power Control Cylinder Service Failure -- Case 3 Failure of Pittsburgh Station Generator Rotor Forging -- Case 4 Stress Corrosion Cracking Failure of the Point Pleasant Bridge -- Case 5 Weld Cold Crack-Induced Failure of Kings Bridge, Melbourne, Australia -- Case 6 Failure Analysis of 175-mm Gun Tube -- Case 7 Hydrotest Failure of a 660-cm-Diameter Rocket Motor Casing -- Case 8 Premature Fracture of Powder-Pressing Die -- Case 9 A Laboratory Analysis of a Lavatory Failure -- 11.6.Additional Comments Regarding Welded Bridges -- References -- Further Reading -- ch. 12 Consequences of Product Failure -- 12.1.Introduction to Product Liability -- 12.2.History of Product Liability --
12.2.1.Caveat Emptor and Express Liability -- 12.2.2.Implied Warranty -- 12.2.3.Privity of Contract -- 12.2.4.Assault on Privity Protection -- 12.2.5.Negligence -- 12.2.6.Strict Liability -- 12.2.7.Attempts to Codify Product Liability Case Law -- 12.3.Product Recall -- 12.3.1.Regulatory Requirements and Considerations -- 12.3.1.1.Consumer Product Safety Commission -- 12.3.1.1.1.Defect -- 12.3.1.1.2.Substantial Product Hazard -- 12.3.1.1.3.Unreasonable Risk -- 12.3.1.2.International Governmental Landscape -- 12.3.2.Technical Considerations Regarding Potential Recalls -- 12.3.2.1.Determination of the Failure Process -- 12.3.2.2.Identification of the Affected Product Population -- 12.3.2.3.Assessment of Risk Association with Product Failure -- 12.3.2.4.Generation of an Appropriate Corrective Action Plan -- 12.3.3.Proactive Considerations -- 12.3.3.1.Think Like a Consumer -- 12.3.3.1.Test Products Thoroughly -- 12.3.3.3.Ensure Adequate Traceability --
12.3.3.4.Manage Change Carefully -- Recall Case Study: The "Unstable" Ladder -- References -- Problems -- Review -- Extend -- APPENDIX A FRACTURE SURFACE PRESERVATION, CLEANING AND REPLICATION TECHNIQUES, AND IMAGE INTERPRETATION -- A.1.Fracture Surface Preservation -- A.2.Fracture Surface Cleaning -- A.3.Replica Preparation and Image Interpretation -- References -- APPENDIX B K CALIBRATIONS FOR TYPICAL FRACTURE TOUGHNESS AND FATIGUE CRACK PROPAGATION TEST SPECIMENS -- APPENDIX C Y CALIBRATION FACTORS FOR ELLIPTICAL AND SEMI-CIRCULAR SURFACE FLAWS -- APPENDIX D SUGGESTED CHECKLIST OF DATA DESIRABLE FOR COMPLETE FAILURE ANALYSIS.
Abstract:
"Hertzberg's 5th edition of Deformation & Fracture Mechanics of Engineering Materials offers several new features including a greater number and variety of homework problems using more computational software; more "real world" applications of theories, case studies; and less coverage of metals. Furthermore, this edition has more focus shifted toward emerging technologies (nanotechnology, micro mechanical systems), dislocations, macroscale plasticity; nanomaterials, biomaterials, smart materials and a new chapter on products liability/recall - supported by vast majority of survey respondents"--
Electronic Access:
Publisher description http://catdir.loc.gov/catdir/enhancements/fy1205/2011051145-d.htmlTable of contents only http://catdir.loc.gov/catdir/enhancements/fy1205/2011051145-t.html
Publisher description http://www.loc.gov/catdir/enhancements/fy1205/2011051145-d.html
Table of contents only http://www.loc.gov/catdir/enhancements/fy1205/2011051145-t.html